Integral Solutions - Integral Six Splitting Expected Share Price Into Its Component Parts

Gary Schurman MBE, CFA

In this white paper we will build a model to split expected share price at some future time t into its component parts. To that end we will work through the following hypothetical problem...

Our Hypothetical Problem

Assume that the owner of 100,000 shares of ABC Company uses those shares as collateral on a non-recourse, three year, interest-only, 1.5 million loan. If at the end of the loan term share price is less than 15.00 (i.e. total share value = 100,000 shares x 15.00 per share = 1.5 million) then the borrower defaults.

We are tasked with structuring a loan guarantee product and to to that we need to know the answers to the following questions:

Scenario Description

- 1 End-of-term share price is less than \$15.00
- 2 End-of-term share price is greater than \$15.00

The model parameters for the task at hand are...

Table 1: Model Parameters

Symbol	Description	Amount
S_0	Share price at time zero (\$)	30.00
μ	Average annual return - mean $(\%)$	12.00
σ	Average annual return - volatility $(\%)$	35.00
T	Loan term in years $(\#)$	3.00

We will define the variable S_T to be random share price at time T, the variable A(D) to be weighted-average share price at time T given that share price is less than \$15.00, and the variable A(U) to be weighted-average share price at time T given that share price is greater than \$15.00. To answer the questions above we need to solve the following equation...

$$\mathbb{E}\left[S_T\right] = \operatorname{Prob}\left[\operatorname{share price} < 15.00\right] \times A(D) + \operatorname{Prob}\left[\operatorname{share price} > 15.00\right] \times A(U) \tag{1}$$

Expected Share Price

We will define the variable θ to be a random rate of return drawn from a normal distribution with mean m and variance v. Using the data in Table 1 above the equation for random share price at time T is...

$$S_T = S_0 \operatorname{Exp}\left\{\theta\right\} \quad \dots \text{ where } \dots \quad \theta \sim N\left[m, v\right] \quad \dots \text{ and } \dots \quad m = \left(\mu - \frac{1}{2}\sigma^2\right)T \quad \dots \text{ and } \dots \quad v = \sigma^2 T \tag{2}$$

We will define the variable x to be the value of the random return in Equation (2) above such that share price at time T equals some threshold value V_T . For our purposes the variable x will be the default point and the threshold value will be \$15.00 per share. The equation for the default point is...

if...
$$S_0 \operatorname{Exp}\left\{x\right\} = V_T$$
 ...then... $x = \ln\left(\frac{V_T}{S_0}\right)$ (3)

Question

What is the weighted-average share price? What is the weighted-average share price? We will define the function $PDF(\theta)$ to be the probability density function of a normally-distributed random variable θ with mean m and variance v. The equation for the probability density function is... [1]

$$PDF(\theta) = \sqrt{\frac{1}{2\pi v}} \operatorname{Exp}\left\{-\frac{1}{2v} \left(\theta - m\right)^2\right\} \dots \text{ where} \dots \ \theta \sim N\left[m, v\right]$$
(4)

We will define the function CNDF(z, mean, variance) to be the cumulative normal distribution function. This function gives us the probability that the random return θ pulled from a normal distribution with mean m and variance v will be less than z. Using Equation (4) above the equation for the cumulative normal distribution function is... [1]

$$\operatorname{CNDF}(z,m,v) = \operatorname{Prob}\left[\theta < z\right] = \int_{-\infty}^{z} \sqrt{\frac{1}{2\pi v}} \operatorname{Exp}\left\{-\frac{1}{2v} \left(\theta - m\right)^{2}\right\} \delta\theta \quad \dots \text{ where } \dots \quad \theta \sim N\left[m,v\right]$$
(5)

Note that the Excel version of the cumulative normal distribution function in Equation (5) above is...

$$CNDF(z, m, v) = NORM.DIST(z, m, \sqrt{v}, TRUE)$$
(6)

Using Equations (2), (3) and (4) above we can make the following statement...

if...
$$\mathbb{E}\left[S_T \mid \theta < x\right] = S_0 \int_{-\infty}^x \sqrt{\frac{1}{2\pi v}} \exp\left\{-\frac{1}{2v} (\theta - m)^2\right\} \exp\left\{\theta\right\} \delta\theta$$
 (7)

and...
$$\mathbb{E}\left[S_T \mid \theta > x\right] = S_0 \int_x^\infty \sqrt{\frac{1}{2\pi v}} \operatorname{Exp}\left\{-\frac{1}{2v} (\theta - m)^2\right\} \operatorname{Exp}\left\{\theta\right\} \delta\theta$$
 (8)

then...
$$\mathbb{E}\left[S_T\right] = \mathbb{E}\left[S_T \mid \theta < x\right] + \mathbb{E}\left[S_T \mid \theta > x\right]$$
 (9)

Using Appendix Equation (25) below and Equation (6) above the solutions to Equations (7) and (8) above are...

$$\mathbb{E}\left[S_T \mid \theta < x\right] = S_0 \operatorname{Exp}\left\{m + \frac{1}{2}v\right\} \operatorname{CNDF}(x, m + v, v)$$
(10)

$$\mathbb{E}\left[S_T \left| \theta > x\right] = S_0 \operatorname{Exp}\left\{m + \frac{1}{2}v\right\} \left(1 - \operatorname{CNDF}(x, m + v, v)\right)$$
(11)

Weighted-Average Share Price

Using Equations (10) and (11) above we will define the variables A(D) and A(U) in Equation (1) above as follows...

$$A(D) = \mathbb{E}\left[S_T \mid \theta < x\right] \div \operatorname{Prob}\left[\theta < x\right] \dots \operatorname{and} \dots A(U) = \mathbb{E}\left[S_T \mid \theta > x\right] \div \operatorname{Prob}\left[\theta > x\right]$$
(12)

Using Equation (12) above we will rewrite Equation (1) above as...

$$\mathbb{E}\left[S_T\right] = \operatorname{Prob}\left[\theta < x\right] \times A(D) + \operatorname{Prob}\left[\theta > x\right] \times A(U)$$
(13)

The Answers To Our Hypothetical Problem

Using Equation (3) above and the data in Table 1 above the equation for our default point x is...

$$x = \ln\left(\frac{15.00}{30.00}\right) = -0.6931\tag{14}$$

Using Equation (2) above and the data in Table 1 above the equations for our mean and variance are...

$$m = \left(0.12 - \frac{1}{2} \times 0.35^2\right) \times 3.00 = 0.1763 \text{ ...and... } v = 0.35^2 \times 3.00 = 0.3675$$
(15)

Using Equations (10), (14) and (15) above and the data in Table 1 above the equation for expected share price given that share price is below the default point is...

$$\mathbb{E}\left[S_3 \mid \theta < -0.6931\right] = 30.00 \times \operatorname{Exp}\left\{0.1763 + \frac{1}{2} \times 0.3675\right\} \times 0.0207 = \$0.89$$

given that *NORM.DIST*(-0.6931, 0.1763 + 0.3675, $\sqrt{0.3675}, TRUE$) = 0.0207 (16)

Using Equations (11), (14) and (15) above and the data in Table 1 above the equation for expected share price given that share price is below the default point is...

$$\mathbb{E}\left[S_3 \mid \theta > -0.6931\right] = 30.00 \times \operatorname{Exp}\left\{0.1763 + \frac{1}{2} \times 0.3675\right\} \times (1 - 0.0207) = \$42.11$$

given that $1 - NORM.DIST(-0.6931, 0.1763 + 0.3675, \sqrt{0.3675}, TRUE) = 0.9793$ (17)

Using Equations (5) and (6) above and the data in Table 1 above the equation for the probability that the random return will be less than the default point is...

$$\operatorname{Prob}\left[\theta < -0.6931\right] = NORM.DIST(-0.6931, 0.1763, \sqrt{0.3675}, TRUE) = 0.0758$$
(18)

Using Equations (5) and (6) above and the data in Table 1 above the equation for the probability that the random return will be greater than the default point is...

$$\operatorname{Prob}\left[\theta > -0.6931\right] = 1 - NORM.DIST(-0.6931, 0.1763, \sqrt{0.3675}, TRUE) = 0.9242 \tag{19}$$

Using Equation (12), (16), (17), (18) and (19) above the answer to our problem is...

$$A(D) = \$0.89 \div 0.0758 = \$11.72 \dots and \dots A(U) = \$42.11 \div 0.9242 = \$45.56$$
(20)

To prove that the answers in Equation (20) are correct we will use the average return mean (μ) in Table 1 above and make sure that Equation (13) above holds...

$$\$30.00 \times \text{Exp}\left\{0.12 \times 3.00\right\} = \$43.00 = \left(0.0758 \times \$11.72\right) + \left(0.9242 \times \$45.56\right) \tag{21}$$

Appendix

A. The solution to the following integral is...

$$I = \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \operatorname{Exp}\left\{-\frac{1}{2v} (\theta - m)^{2}\right\} \operatorname{Exp}\left\{\theta\right\} \delta\theta$$
$$= \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \operatorname{Exp}\left\{-\frac{1}{2v} (\theta^{2} - 2m\theta + m^{2} - 2v\theta)\right\} \delta\theta$$
$$= \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \operatorname{Exp}\left\{-\frac{1}{2v} (\theta^{2} - 2m\theta + m^{2} - 2v\theta + 2mv - 2mv + v^{2} - v^{2})\right\} \delta\theta$$
(22)

We will make the following definition...

$$(\theta - (m+v))^2 = \theta^2 - 2m\theta + m^2 - 2v\theta + 2mv + v^2$$
(23)

Using the definition in Equation (23) above we can rewrite Equation (22) above as...

$$I = \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \exp\left\{-\frac{1}{2v} \left(\theta - (m+v)\right)^{2}\right) - \frac{1}{2v} \left(-2mv - v^{2}\right)\right\} \delta\theta$$

$$= \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \exp\left\{-\frac{1}{2v} \left(\theta - (m+v)\right)^{2}\right)\right\} \exp\left\{-\frac{1}{2v} \left(-2mv - v^{2}\right)\right\} \delta\theta$$

$$= \exp\left\{-\frac{1}{2v} \left(-2mv - v^{2}\right)\right\} \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \exp\left\{-\frac{1}{2v} \left(\theta - (m+v)\right)^{2}\right)\right\} \delta\theta$$

$$= \exp\left\{m + \frac{1}{2}v\right\} \int_{-\infty}^{x} \sqrt{\frac{1}{2\pi v}} \exp\left\{-\frac{1}{2v} \left(\theta - (m+v)\right)^{2}\right)\right\} \delta\theta$$
 (24)

Using Equation (5) above we can rewrite Equation (24) above as...

$$I = \operatorname{Exp}\left\{0.12\right\} \operatorname{CNDF}(x, m + v, v)$$
(25)

References

[1] Gary Schurman, The Calculus of the Normal Distribution, October, 2010.