# Integral Solutions - Integral Six Splitting Expected Share Price Into Its Component Parts 

Gary Schurman MBE, CFA

In this white paper we will build a model to split expected share price at some future time $t$ into its component parts. To that end we will work through the following hypothetical problem...

## Our Hypothetical Problem

Assume that the owner of 100,000 shares of ABC Company uses those shares as collateral on a non-recourse, three year, interest-only, $\$ 1.5$ million loan. If at the end of the loan term share price is less than $\$ 15.00$ (i.e. total share value $=100,000$ shares $\times \$ 15.00$ per share $=\$ 1.5$ million) then the borrower defaults.

We are tasked with structuring a loan guarantee product and to to that we need to know the answers to the following questions:

## Scenario Description

1 End-of-term share price is less than $\$ 15.00$
2 End-of-term share price is greater than $\$ 15.00$

## Question

What is the weighted-average share price?
What is the weighted-average share price?

The model parameters for the task at hand are...

## Table 1: Model Parameters

| Symbol | Description | Amount |
| :---: | :--- | ---: |
| $S_{0}$ | Share price at time zero (\$) | 30.00 |
| $\mu$ | Average annual return - mean (\%) | 12.00 |
| $\sigma$ | Average annual return - volatility (\%) | 35.00 |
| $T$ | Loan term in years (\#) | 3.00 |

We will define the variable $S_{T}$ to be random share price at time $T$, the variable $A(D)$ to be weighted-average share price at time $T$ given that share price is less than $\$ 15.00$, and the variable $A(U)$ to be weighted-average share price at time $T$ given that share price is greater than $\$ 15.00$. To answer the questions above we need to solve the following equation...

$$
\begin{equation*}
\mathbb{E}\left[S_{T}\right]=\operatorname{Prob}[\text { share price }<15.00] \times A(D)+\operatorname{Prob}[\text { share price }>15.00] \times A(U) \tag{1}
\end{equation*}
$$

## Expected Share Price

We will define the variable $\theta$ to be a random rate of return drawn from a normal distribution with mean $m$ and variance $v$. Using the data in Table 1 above the equation for random share price at time $T$ is...

$$
\begin{equation*}
S_{T}=S_{0} \operatorname{Exp}\{\theta\} \ldots \text { where... } \theta \sim N[m, v] \ldots \text { and... } m=\left(\mu-\frac{1}{2} \sigma^{2}\right) T \ldots \text { and } \ldots v=\sigma^{2} T \tag{2}
\end{equation*}
$$

We will define the variable $x$ to be the value of the random return in Equation (2) above such that share price at time $T$ equals some threshold value $V_{T}$. For our purposes the variable $x$ will be the default point and the threshold value will be $\$ 15.00$ per share. The equation for the default point is...

$$
\begin{equation*}
\text { if... } S_{0} \operatorname{Exp}\{x\}=V_{T} \text {...then... } x=\ln \left(\frac{V_{T}}{S_{0}}\right) \tag{3}
\end{equation*}
$$

We will define the function $\operatorname{PDF}(\theta)$ to be the probability density function of a normally-distributed random variable $\theta$ with mean $m$ and variance $v$. The equation for the probability density function is... [1]

$$
\begin{equation*}
\operatorname{PDF}(\theta)=\sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-m)^{2}\right\} \ldots \text { where } \ldots \theta \sim N[m, v] \tag{4}
\end{equation*}
$$

We will define the function $\operatorname{CNDF}(\mathrm{z}$, mean, variance) to be the cumulative normal distribution function. This function gives us the probability that the random return $\theta$ pulled from a normal distribution with mean $m$ and variance $v$ will be less than $z$. Using Equation (4) above the equation for the cumulative normal distribution function is... [1]

$$
\begin{equation*}
\operatorname{CNDF}(z, m, v)=\operatorname{Prob}[\theta<z]=\int_{\infty}^{z} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-m)^{2}\right\} \delta \theta \ldots \text { where } \ldots \theta \sim N[m, v] \tag{5}
\end{equation*}
$$

Note that the Excel version of the cumulative normal distribution function in Equation (5) above is...

$$
\begin{equation*}
\operatorname{CNDF}(z, m, v)=N O R M \cdot D I S T(z, m, \sqrt{v}, T R U E) \tag{6}
\end{equation*}
$$

Using Equations (2), (3) and (4) above we can make the following statement...

$$
\begin{align*}
& \text { if... } \mathbb{E}\left[S_{T} \mid \theta<x\right]=S_{0} \int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-m)^{2}\right\} \operatorname{Exp}\{\theta\} \delta \theta  \tag{7}\\
& \text { and... } \mathbb{E}\left[S_{T} \mid \theta>x\right]=S_{0} \int_{x}^{\infty} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-m)^{2}\right\} \operatorname{Exp}\{\theta\} \delta \theta  \tag{8}\\
& \text { then... } \mathbb{E}\left[S_{T}\right]=\mathbb{E}\left[S_{T} \mid \theta<x\right]+\mathbb{E}\left[S_{T} \mid \theta>x\right] \tag{9}
\end{align*}
$$

Using Appendix Equation (25) below and Equation (6) above the solutions to Equations (7) and (8) above are...

$$
\begin{align*}
& \mathbb{E}\left[S_{T} \mid \theta<x\right]=S_{0} \operatorname{Exp}\left\{m+\frac{1}{2} v\right\} \operatorname{CNDF}(x, m+v, v)  \tag{10}\\
& \mathbb{E}\left[S_{T} \mid \theta>x\right]=S_{0} \operatorname{Exp}\left\{m+\frac{1}{2} v\right\}(1-\operatorname{CNDF}(x, m+v, v)) \tag{11}
\end{align*}
$$

## Weighted-Average Share Price

Using Equations (10) and (11) above we will define the variables $A(D)$ and $A(U)$ in Equation (1) above as follows...

$$
\begin{equation*}
A(D)=\mathbb{E}\left[S_{T} \mid \theta<x\right] \div \operatorname{Prob}[\theta<x] \ldots \text { and } \ldots A(U)=\mathbb{E}\left[S_{T} \mid \theta>x\right] \div \operatorname{Prob}[\theta>x] \tag{12}
\end{equation*}
$$

Using Equation (12) above we will rewrite Equation (1) above as...

$$
\begin{equation*}
\mathbb{E}\left[S_{T}\right]=\operatorname{Prob}[\theta<x] \times A(D)+\operatorname{Prob}[\theta>x] \times A(U) \tag{13}
\end{equation*}
$$

## The Answers To Our Hypothetical Problem

Using Equation (3) above and the data in Table 1 above the equation for our default point $x$ is...

$$
\begin{equation*}
x=\ln \left(\frac{15.00}{30.00}\right)=-0.6931 \tag{14}
\end{equation*}
$$

Using Equation (2) above and the data in Table 1 above the equations for our mean and variance are...

$$
\begin{equation*}
m=\left(0.12-\frac{1}{2} \times 0.35^{2}\right) \times 3.00=0.1763 \ldots \text { and } . . . v=0.35^{2} \times 3.00=0.3675 \tag{15}
\end{equation*}
$$

Using Equations (10), (14) and (15) above and the data in Table 1 above the equation for expected share price given that share price is below the default point is...

$$
\begin{align*}
& \mathbb{E}\left[S_{3} \mid \theta<-0.6931\right]=30.00 \times \operatorname{Exp}\left\{0.1763+\frac{1}{2} \times 0.3675\right\} \times 0.0207=\$ 0.89 \\
& \text { given that NORM.DIST }(-0.6931,0.1763+0.3675, \sqrt{0.3675}, T R U E)=0.0207 \tag{16}
\end{align*}
$$

Using Equations (11), (14) and (15) above and the data in Table 1 above the equation for expected share price given that share price is below the default point is...

$$
\begin{align*}
& \mathbb{E}\left[S_{3} \mid \theta>-0.6931\right]=30.00 \times \operatorname{Exp}\left\{0.1763+\frac{1}{2} \times 0.3675\right\} \times(1-0.0207)=\$ 42.11 \\
& \text { given that } 1-\text { NORM.DIST }(-0.6931,0.1763+0.3675, \sqrt{0.3675}, T R U E)=0.9793 \tag{17}
\end{align*}
$$

Using Equations (5) and (6) above and the data in Table 1 above the equation for the probability that the random return will be less than the default point is...

$$
\begin{equation*}
\text { Prob }[\theta<-0.6931]=\text { NORM.DIST }(-0.6931,0.1763, \sqrt{0.3675}, T R U E)=0.0758 \tag{18}
\end{equation*}
$$

Using Equations (5) and (6) above and the data in Table 1 above the equation for the probability that the random return will be greater than the default point is...

$$
\begin{equation*}
\text { Prob }[\theta>-0.6931]=1-\text { NORM.DIST }(-0.6931,0.1763, \sqrt{0.3675}, T R U E)=0.9242 \tag{19}
\end{equation*}
$$

Using Equation (12), (16), (17), (18) and (19) above the answer to our problem is...

$$
\begin{equation*}
A(D)=\$ 0.89 \div 0.0758=\$ 11.72 \ldots \text { and } \ldots A(U)=\$ 42.11 \div 0.9242=\$ 45.56 \tag{20}
\end{equation*}
$$

To prove that the answers in Equation (20) are correct we will use the average return mean $(\mu)$ in Table 1 above and make sure that Equation (13) above holds...

$$
\begin{equation*}
\$ 30.00 \times \operatorname{Exp}\{0.12 \times 3.00\}=\$ 43.00=(0.0758 \times \$ 11.72)+(0.9242 \times \$ 45.56) \tag{21}
\end{equation*}
$$

## Appendix

A. The solution to the following integral is...

$$
\begin{align*}
I & =\int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-m)^{2}\right\} \operatorname{Exp}\{\theta\} \delta \theta \\
& =\int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}\left(\theta^{2}-2 m \theta+m^{2}-2 v \theta\right)\right\} \delta \theta \\
& =\int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}\left(\theta^{2}-2 m \theta+m^{2}-2 v \theta+2 m v-2 m v+v^{2}-v^{2}\right)\right\} \delta \theta \tag{22}
\end{align*}
$$

We will make the following definition...

$$
\begin{equation*}
(\theta-(m+v))^{2}=\theta^{2}-2 m \theta+m^{2}-2 v \theta+2 m v+v^{2} \tag{23}
\end{equation*}
$$

Using the definition in Equation (23) above we can rewrite Equation (22) above as...

$$
\begin{align*}
I & \left.=\int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-(m+v))^{2}\right)-\frac{1}{2 v}\left(-2 m v-v^{2}\right)\right\} \delta \theta \\
& \left.=\int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-(m+v))^{2}\right)\right\} \operatorname{Exp}\left\{-\frac{1}{2 v}\left(-2 m v-v^{2}\right)\right\} \delta \theta \\
& \left.=\operatorname{Exp}\left\{-\frac{1}{2 v}\left(-2 m v-v^{2}\right)\right\} \int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-(m+v))^{2}\right)\right\} \delta \theta \\
& \left.=\operatorname{Exp}\left\{m+\frac{1}{2} v\right\} \int_{-\infty}^{x} \sqrt{\frac{1}{2 \pi v}} \operatorname{Exp}\left\{-\frac{1}{2 v}(\theta-(m+v))^{2}\right)\right\} \delta \theta \tag{24}
\end{align*}
$$

Using Equation (5) above we can rewrite Equation (24) above as...

$$
\begin{equation*}
I=\operatorname{Exp}\{0.12\} \operatorname{CNDF}(x, m+v, v) \tag{25}
\end{equation*}
$$

## References

[1] Gary Schurman, The Calculus of the Normal Distribution, October, 2010.

